
HETEROGENEOUS SYSTEM

ARCHITECTURE OVERVIEW

HOT CHIPS TUTORIAL - AUGUST 2013

PHIL ROGERS

HSA FOUNDATION PRESIDENT

AMD CORPORATE FELLOW

HSA FOUNDATION

 Founded in June 2012

 Developing a new platform for

heterogeneous systems

 www.hsafoundation.com

 Specifications under development

in working groups

 Our first specification, HSA

Programmers Reference Manual

is already published and available

on our web site

 Additional specifications for

System Architecture, Runtime

Software and Tools are in process

© Copyright 2012 HSA Foundation. All Rights Reserved. 2

HSA FOUNDATION MEMBERSHIP —

AUGUST 2013

© Copyright 2012 HSA Foundation. All Rights Reserved. 3

Founders

Promoters

Supporters

Contributors

Academic

Associates

http://www.apical.co.uk/
http://www.multicorewareinc.com/index.php

SOCS HAVE PROLIFERATED —

MAKE THEM BETTER

 SOCs have arrived and are a tremendous

advance over previous platforms

 SOCs combine CPU cores, GPU cores and

other accelerators, with high bandwidth access

to memory

 How do we make them even better?

 Easier to program

 Easier to optimize

 Higher performance

 Lower power

 HSA unites accelerators architecturally

 Early focus on the GPU compute accelerator,

but HSA goes well beyond the GPU

© Copyright 2012 HSA Foundation. All Rights Reserved. 4

INFLECTIONS IN PROCESSOR DESIGN

© Copyright 2012 HSA Foundation. All Rights Reserved. 5

?

S
in

g
le

-t
h
re

a
d

P
e
rf

o
rm

a
n
c
e

Time

we are

here

Enabled by:
 Moore’s

Law

 Voltage
Scaling

Constrained by:

Power

Complexity

Single-Core Era

M
o
d
e
rn

 A
p
p
lic

a
ti
o
n

P
e
rf

o
rm

a
n
c
e

Time (Data-parallel exploitation)

we are

here

Heterogeneous

Systems Era

Enabled by:
 Abundant data

parallelism

 Power efficient

GPUs

Temporarily

Constrained by:
Programming

models

Comm.overhead
T

h
ro

u
g
h
p
u
t

P
e
rf

o
rm

a
n
c
e

Time (# of processors)

we are

here

Enabled by:
 Moore’s Law

 SMP

architecture

Constrained by:
Power

Parallel SW

Scalability

Multi-Core Era

Assembly C/C++ Java … pthreads OpenMP / TBB …
Shader CUDA OpenCL

 C++ and Java

HIGH LEVEL FEATURES OF HSA

 Features currently being defined in the HSA Working Groups**

 Unified addressing across all processors

 Operation into pageable system memory

 Full memory coherency

 User mode dispatch

 Architected queuing language

 High level language support for GPU compute processors

 Preemption and context switching

© Copyright 2012 HSA Foundation. All Rights Reserved. 6

** All features subject to change, pending completion and ratification of specifications in the HSA Working Groups

HSA — AN OPEN PLATFORM

 Open Architecture, membership open to all

 HSA Programmers Reference Manual

 HSA System Architecture

 HSA Runtime

 Delivered via royalty free standards

 Royalty Free IP, Specifications and APIs

 ISA agnostic for both CPU and GPU

 Membership from all areas of computing

 Hardware companies

 Operating Systems

 Tools and Middleware

© Copyright 2012 HSA Foundation. All Rights Reserved. 7

HSA INTERMEDIATE LAYER — HSAIL

 HSAIL is a virtual ISA for parallel programs

 Finalized to ISA by a JIT compiler or “Finalizer”

 ISA independent by design for CPU & GPU

 Explicitly parallel

 Designed for data parallel programming

 Support for exceptions, virtual functions,

and other high level language features

 Lower level than OpenCL SPIR

 Fits naturally in the OpenCL compilation stack

 Suitable to support additional high level languages and programming models:

 Java, C++, OpenMP, etc

© Copyright 2012 HSA Foundation. All Rights Reserved. 8

HSA MEMORY MODEL

 Defines visibility ordering between all threads

in the HSA System

 Designed to be compatible with C++11, Java,

OpenCL and .NET Memory Models

 Relaxed consistency memory model for

parallel compute performance

 Visibility controlled by:

 Load.Acquire

 Store.Release

 Barriers

© Copyright 2012 HSA Foundation. All Rights Reserved. 9

HSA QUEUING MODEL

 User mode queuing for low latency dispatch

 Application dispatches directly

 No OS or driver in the dispatch path

 Architected Queuing Layer

 Single compute dispatch path for all hardware

 No driver translation, direct to hardware

 Allows for dispatch to queue from any agent

 CPU or GPU

 GPU self enqueue enables lots of solutions

 Recursion

 Tree traversal

 Wavefront reforming

© Copyright 2012 HSA Foundation. All Rights Reserved. 10

HSA SOFTWARE

Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries

OpenCL™, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

TITLE

© Copyright 2012 HSA Foundation. All Rights Reserved. 12

OPENCL™ AND HSA

 HSA is an optimized platform architecture

for OpenCL™

 Not an alternative to OpenCL™

 OpenCL™ on HSA will benefit from

 Avoidance of wasteful copies

 Low latency dispatch

 Improved memory model

 Pointers shared between CPU and GPU

 OpenCL™ 2.0 shows considerable alignment

with HSA

 Many HSA member companies are also active

with Khronos in the OpenCL™ working group

© Copyright 2012 HSA Foundation. All Rights Reserved. 13

BOLT — PARALLEL PRIMITIVES

LIBRARY FOR HSA

 Easily leverage the inherent power efficiency of GPU computing

 Common routines such as scan, sort, reduce, transform

 More advanced routines like heterogeneous pipelines

 Bolt library works with OpenCL and C++ AMP

 Enjoy the unique advantages of the HSA platform

 Move the computation not the data

 Finally a single source code base for the CPU and GPU!

 Developers can focus on core algorithms

 Bolt version 1.0 for OpenCL and C++ AMP is available now at

https://github.com/HSA-Libraries/Bolt

© Copyright 2012 HSA Foundation. All Rights Reserved. 14

https://github.com/HSA-Libraries/Bolt
https://github.com/HSA-Libraries/Bolt
https://github.com/HSA-Libraries/Bolt

HSA OPEN SOURCE SOFTWARE

 HSA will feature an open source linux execution and compilation stack

 Allows a single shared implementation for many components

 Enables university research and collaboration in all areas

 Because it’s the right thing to do

© Copyright 2012 HSA Foundation. All Rights Reserved. 15

Component Name IHV or Common Rationale

HSA Bolt Library Common Enable understanding and debug

HSAIL Code Generator Common Enable research

LLVM Contributions Common Industry and academic collaboration

HSAIL Assembler Common Enable understanding and debug

HSA Runtime Common Standardize on a single runtime

HSA Finalizer IHV Enable research and debug

HSA Kernel Driver IHV For inclusion in linux distros

ACCELERATING JAVA
GOING BEYOND NATIVE LANGUAGES

JAVA ENABLEMENT BY APARAPI

© Copyright 2012 HSA Foundation. All Rights Reserved. 17

Developer creates
Java™ source

Source compiled to class files
(bytecode) using standard compiler

Aparapi = Runtime capable of converting Java™ bytecode to OpenCL™

For execution on any

OpenCL™ 1.1+ capable device

OR execute via a thread pool if
OpenCL™ is not available

JAVA HETEROGENEOUS

ENABLEMENT ROADMAP

CPU ISA GPU ISA

JVM

Application

APARAPI

GPU CPU

OpenCL™

© Copyright 2012 HSA Foundation. All Rights Reserved. 18

CPU ISA GPU ISA

JVM

Application

APARAPI

HSA CPU HSA CPU

HSA Finalizer

HSAIL

CPU ISA GPU ISA

JVM

Application

APARAPI

HSA CPU HSA CPU

HSA Finalizer

HSAIL

HSA Runtime

LLVM Optimizer

IR

CPU ISA GPU ISA

Sumatra Enabled JVM

Application

HSA CPU HSA CPU

HSA Finalizer

HSAIL

SUMATRA PROJECT OVERVIEW

 AMD/Oracle sponsored Open Source (OpenJDK) project

 Targeted at Java 9 (2015 release)

 Allows developers to efficiently represent data parallel

algorithms in Java

 Sumatra ‘repurposes’ Java 8’s multi-core Stream/Lambda

API’s to enable both CPU or GPU computing

 At runtime, Sumatra enabled Java Virtual Machine (JVM)

will dispatch ‘selected’ constructs to available HSA

enabled devices

 Developers of Java libraries are already refactoring their

library code to use these same constructs

 So developers using existing libraries should see GPU

acceleration without any code changes

 http://openjdk.java.net/projects/sumatra/

 https://wikis.oracle.com/display/HotSpotInternals/Sumatra

 http://mail.openjdk.java.net/pipermail/sumatra-dev/

© Copyright 2012 HSA Foundation. All Rights Reserved. 19

Application.java

Java Compiler

GPU CPU

Sumatra Enabled JVM

Application

GPU ISA

Lambda/Stream API

CPU ISA

Application.class

Development

Runtime

HSA Finalizer

http://openjdk.java.net/projects/sumatra/
http://openjdk.java.net/projects/sumatra/
http://openjdk.java.net/projects/sumatra/
https://wikis.oracle.com/display/HotSpotInternals/Sumatra
http://mail.openjdk.java.net/pipermail/sumatra-dev/
http://mail.openjdk.java.net/pipermail/sumatra-dev/
http://mail.openjdk.java.net/pipermail/sumatra-dev/

EXAMPLE WORKLOADS

HAAR FACE DETECTION
CORNERSTONE TECHNOLOGY

FOR COMPUTERVISION

LOOKING FOR FACES IN ALL

THE RIGHT PLACES

Quick HD Calculations

Search square = 21 x 21

Pixels = 1920 x 1080 = 2,073,600

Search squares = 1900 x 1060 = ~2 Million

© Copyright 2012 HSA Foundation. All Rights Reserved. 22

LOOKING FOR DIFFERENT SIZE FACES

— BY SCALING THE VIDEO FRAME

© Copyright 2012 HSA Foundation. All Rights Reserved. 23

More HD Calculations

70% scaling in H and V

Total Pixels = 4.07 Million

Search squares = 3.8 Million

HAAR CASCADE STAGES

© Copyright 2012 HSA Foundation. All Rights Reserved. 24

Feature l

Feature m

Feature p

Feature r

Feature q

Feature k

Stage N

Stage N+1

Face still
possible? Yes

No

REJECT
FRAME

22 CASCADE STAGES, EARLY OUT

BETWEEN EACH

© Copyright 2012 HSA Foundation. All Rights Reserved. 25

STAGE 22 STAGE 21 STAGE 2 STAGE 1

NO FACE

FACE
CONFIRMED

Final HD Calculations

Search squares = 3.8 million

Average features per square = 124

Calculations per feature = 100

Calculations per frame = 47 GCalcs

Calculation Rate

30 frames/sec = 1.4TCalcs/second

60 frames/sec = 2.8TCalcs/second

… and this only gets front-facing faces

UNBALANCING DUE TO EARLY EXITS

 When running on the GPU, we run each search rectangle on a separate

work item

 Early out algorithms, like HAAR, exhibit divergence between work items

 Some work items exit early

 Their neighbors continue

 SIMD packing suffers as a result

© Copyright 2012 HSA Foundation. All Rights Reserved. 26

Live

Dead

CASCADE DEPTH ANALYSIS

© Copyright 2012 HSA Foundation. All Rights Reserved. 27

0

5

10

15

20

25

Cascade Depth

20-25

15-20

10-15

5-10

0-5

PROCESSING TIME/STAGE

© Copyright 2012 HSA Foundation. All Rights Reserved. 28

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9-22

T
im

e
 (

m
s
)

“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz)

GPU

CPU

PERFORMANCE CPU-VS-GPU

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 22

Im
a
g

e
s
/S

e
c

Number of Cascade Stages on GPU

“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz)

CPU

HSA

GPU

© Copyright 2012 HSA Foundation. All Rights Reserved. 29

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

HAAR SOLUTION — RUN DIFFERENT

CASCADES ON GPU AND CPU

© Copyright 2012 HSA Foundation. All Rights Reserved. 30

+2.5x

-2.5x

INCREASED

PERFORMANCE
DECREASED ENERGY

PER FRAME

By seamlessly sharing data between CPU and GPU,

allows the right processor to handle its appropriate workload

ACCELERATING SUFFIX ARRAY

CONSTRUCTION
CLOUD SERVER WORKLOAD

SUFFIX ARRAYS

 Suffix Arrays are a fundamental data structure

 Designed for efficient searching of a large text

 Quickly locate every occurrence of a substring S in a text T

 Suffix Arrays are used to accelerate in-memory cloud workloads

 Full text index search

 Lossless data compression

 Bio-informatics

© Copyright 2012 HSA Foundation. All Rights Reserved. 32

ACCELERATED SUFFIX ARRAY

CONSTRUCTION ON HSA

© Copyright 2012 HSA Foundation. All Rights Reserved. 33

M. Deo, “Parallel Suffix Array Construction and Least Common Prefix for the GPU”, Submitted to ”Principles and Practice of Parallel Programming, (PPoPP’13)” February 2013.

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G, 6 compute units, 685MHz; 4GB RAM

By offloading data parallel computations to

GPU, HSA increases performance and

reduces energy for Suffix Array Construction

versus Single Threaded CPU.

By efficiently sharing data between CPU and

GPU, HSA lets us move compute to data

without penalty of intermediate copies.

+5.8x

-5x

INCREASED

PERFORMANCE
DECREASED

ENERGY Merge Sort::GPU

Radix Sort::GPU

Compute SA::CPU

Lexical Rank::CPU

Radix Sort::GPU

Skew Algorithm for Compute SA

GAMEPLAY RIGID BODY PHYSICS

RIGID BODY PHYSICS SIMULATION

 Rigid-Body Physics Simulation is:

 A way to animate and interact with objects, widely used in games and movie production

 Used to drive game play and for visual effects (eye candy)

 Physics Simulation is used in many of today’s software:

 Middleware Physics engines such as Bullet, Havok, PhysX

 Games ranging from Angry Birds and Cut the Rope to Tomb Raider and Crysis 3

 3D authoring tools such as Autodesk Maya, Unity 3D, Houdini, Cinema 4D, Lightwave

 Industrial applications such as Siemens NX8 Mechatronics Concept Design

 Medical applications such as surgery trainers

 Robotics simulation

 But GPU-accelerated rigid-body physics is not used in game play —

only in effects

© Copyright 2012 HSA Foundation. All Rights Reserved. 35

RIGID BODY PHYSICS — ALGORITHM

 Find potential interacting object “pairs” using bounding shape approximations.

 Perform full overlap testing between potentially interacting pairs

 Compute exact contact information for a various shape types

 Compute constraint forces for natural motion and stable stacking

© Copyright 2012 HSA Foundation. All Rights Reserved.

Broad-Phase

Collision

Detection

Setup

constraints

Solve

constraints

Compute

contact

points

A B0 B1 C0 C1 D1 D1 A

1 1 2 2 3 3 4 4

B D

A

1

2 3

4

Mid-Phase

Collision

Detection

Narrow-Phase

Collision

Detection

36

RIGID BODY PHYSICS —

CHALLENGES & SOLUTIONS

Implementation Challenges

 Game engine and Physics engine

need to interact synchronously

during simulation

 The set of pairs can be huge and

changes from frame to frame

 Thousands to Millions for any

given frame

 Narrow-phase algorithms cause

thread divergence

Benefits of HSA

 Fast CPU round-trips
 User mode dispatch

 Unified Addressing,

 Pageable memory,

 Coherency

 Supports as large a pair list as CPU

 Entire memory space

 Dynamic memory allocation

 Improved handling of divergence

 GPU enqueue

© Copyright 2012 HSA Foundation. All Rights Reserved. 37

EASE OF PROGRAMMING
CODE COMPLEXITY VS. PERFORMANCE

LINES-OF-CODE AND PERFORMANCE FOR

DIFFERENT PROGRAMMING MODELS

AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM.

Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta

0

50

100

150

200

250

300

350

L
O

C

Copy-back Algorithm Launch Copy Compile Init Performance

Serial CPU TBB Intrinsics+TBB OpenCL™-C OpenCL™ -C++ C++ AMP HSA Bolt

P
e

rfo
rm

a
n

c
e

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0 Copy-back

Algorithm

Launch

Copy

Compile

Init.

Copy-back

Algorithm

Launch

Copy

Compile

Copy-back

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

(Exemplary ISV “Hessian” Kernel)

© Copyright 2012 HSA Foundation. All Rights Reserved. 39

© Copyright 2012 HSA Foundation. All Rights Reserved. 40

THE HSA FUTURE

 Architected heterogeneous processing on the SOC

 Programming of accelerators becomes much easier

 Accelerated software that runs across multiple hardware vendors

 Scalability from smart phones to super computers on a common architecture

 GPU acceleration of parallel processing is the initial target, with DSPs

and other accelerators coming to the HSA system architecture model

 Heterogeneous software ecosystem evolves at a much faster pace

 Lower power, more capable devices in your hand, on the wall, in the cloud

THANK YOU

